Jan 2009 Q7

_	estion nber	Scheme	Marks
7	(a)	The determinant is a - 2	М1
		$\mathbf{X}^{-1} = \frac{1}{a - 2} \begin{pmatrix} -1 & -a \\ 1 & 2 \end{pmatrix}$	M1 A1 (3)
	(b)	$\mathbf{I} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$	B1
		Attempt to solve $2 - \frac{1}{a - 2} = 1$, or $a - \frac{a}{a - 2} = 0$, or $-1 + \frac{1}{a - 2} = 0$, or $-1 + \frac{2}{a - 2} = 1$	M1
		To obtain $a = 3$ only	A1 cso (3) [6]
		Alternatives for (b) If they use $X^2 + I = X$ they need to identify I for $B1$, then attempt to solve suitable equation for $M1$ and obtain $a = 3$ for $A1$ If they use $X^2 + X^{-1} = O$, they can score the $B1$ then marks for solving If they use $X^3 + I = O$ they need to identify I for $B1$, then attempt to solve suitable equation for $M1$ and obtain $a = 3$ for $A1$	

Notes:

(a) Attempt ad-bc for first M1

$$\frac{1}{\det}\begin{pmatrix} -1 & -a \\ 1 & 2 \end{pmatrix}$$
 for second M1

(b) Final A1 for correct solution only

Jan 2009 Q10

Ques		Scheme	Mai	ks
10	(a)	A represents an enlargement scale factor $3\sqrt{2}$ (centre O)	M1 A1	
		B represents reflection in the line $y = x$ C represents a rotation of $\frac{\pi}{4}$, i.e.45° (anticlockwise) (about O)	B1 B1	(4)
	(b)	$\begin{pmatrix} 3 & -3 \\ 3 & 3 \end{pmatrix}$	M1 A1	(2)
	(c)	$ \begin{pmatrix} 3 & -3 \\ 3 & 3 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} -3 & 3 \\ 3 & 3 \end{pmatrix} $	B1	(1)
	(d)	$ \begin{pmatrix} -3 & 3 \\ 3 & 3 \end{pmatrix} \begin{pmatrix} 0 - 15 & 4 \\ 0 & 15 & 21 \end{pmatrix} = \begin{pmatrix} 0 & 90 & 51 \\ 0 & 0 & 75 \end{pmatrix} $ so $(0, 0)$, $(90, 0)$ and $(51, 75)$	M1A1A	1A1 (4)
	(e)	Area of $\triangle OR'S'$ is $\frac{1}{2} \times 90 \times 75 = 3375$	B1	
		Determinant of E is -18 or use area scale factor of enlargement So area of $\triangle ORS$ is $3375 \div 18 = 187.5$	M1A1	(3) [14]

Notes:

- (a) Enlargement for M1 $3\sqrt{2}$ for A1
- (b) Answer incorrect, require CD for M1
- (c) Answer given so require DB as shown for B1
- (d) Coordinates as shown or written as $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 90 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 51 \\ 75 \end{pmatrix}$ for each A1
- (e) 3375 B1 Divide by theirs for M1

Question Number	Scheme	Marks
Q5 (a)	$\mathbf{R}^{2} = \begin{pmatrix} a^{2} + 2a & 2a + 2b \\ a^{2} + ab & 2a + b^{2} \end{pmatrix}$	M1 A1 A1 (3)
(b)	Puts their $a^2 + 2a = 15$ or their $2a + b^2 = 15$ or their $(a^2 + 2a)(2a + b^2) - (a^2 + ab)(2a + 2b) = 225$ (or to 15),	м1,
	Puts their $a^2 + ab = 0$ or their $2a + 2b = 0$	M1
	Solve to find either a or b	M1
	a = 3, b = -3	A1, A1 (5) [8]
Alternative for (b)	Uses $\mathbb{R}^2 \times \text{column vector} = 15 \times \text{column vector}$, and equates rows to give two equations in a and b only Solves to find either a or b as above method	M1, M1 M1 A1 A1
Notes	(a) 1 term correct: M1 A0 A0 2 or 3 terms correct: M1 A1 A0	
	 (b) M1 M1 as described in scheme (In the alternative scheme column vector can be general or specific for first M1 but must be specific for 2nd M1) M1 requires solving equations to find a and/or b (though checking that correct answer satisfies the equations will earn this mark) This mark can be given independently of the first two method marks. So solving M² = 15M for example gives M0M0M1A0A0 in part (b) Also putting leading diagonal = 0 and other diagonal = 15 is M0M0M1A0A0 (No possible solutions as a >0) A1 A1 for correct answers only Any Extra answers given, e.g. a = -5 and b = 5 or wrong answers – deduct last A1 awarded So the two sets of answers would be A1 A0 Just the answer . a = -5 and b = 5 is A0 A0 Stopping at two values for a or for b – no attempt at other is A0A0 Answer with no working at all is 0 marks 	

Question Number	Scheme	Marks
Q7 (a)	Use $4a - (-2 \times -1) = 0$ \Rightarrow $a_1 = \frac{1}{2}$	M1, A1
(b)	Determinant: $(3 \times 4) - (-2 \times -1) = 10$ (Δ)	(2) M1
	$\mathbf{B}^{-1} = \frac{1}{10} \begin{pmatrix} 4 & 2 \\ 1 & 3 \end{pmatrix}$	M1 A1cso
(c)	$\frac{1}{10} \begin{pmatrix} 4 & 2 \\ 1 & 3 \end{pmatrix} \begin{pmatrix} k-6 \\ 3k+12 \end{pmatrix}, = \frac{1}{10} \begin{pmatrix} 4(k-6)+2(3k+12) \\ (k-6)+3(3k+12) \end{pmatrix}$	M1, A1ft
	$\binom{k}{k+3} \text{Lies on } y = x+3$	A1 (3) [8]
	Alternatives: (c) $ \begin{pmatrix} 3 & -2 \\ -1 & 4 \end{pmatrix} \begin{pmatrix} x \\ x+3 \end{pmatrix}, = \begin{pmatrix} 3x-2(x+3) \\ -x+4(x+3) \end{pmatrix}, $	M1, A1,
	$= \begin{pmatrix} x-6 \\ 3x+12 \end{pmatrix}, \text{ which was of the form} \qquad (k-6, 3k+12)$	A1
	Or $\begin{pmatrix} 3 & -2 \\ -1 & 4 \end{pmatrix}\begin{pmatrix} x \\ y \end{pmatrix}$, $=\begin{pmatrix} 3x - 2y \\ -x + 4y \end{pmatrix} = \begin{pmatrix} k - 6 \\ 3k + 12 \end{pmatrix}$, and solves simultaneous equations	М1
	Both equations correct and eliminate one letter to get $x = k$ or $y = k + 3$ or $10x - 10y = -30$ or equivalent.	A1
	Completely correct work (to $x = k$ and $y = k + 3$), and conclusion lies on $y = x + 3$	A1
Notes	 (a) Allow sign slips for first M1 (b) Allow sign slip for determinant for first M1 (This mark may be awarded for 1/10 appearing in inverse matrix.) Second M1 is for correctly treating the 2 by 2 matrix, ie for (4 2 1 3) Watch out for determinant (3 + 4) - (-1 + -2) = 10 - M0 then final answer is A0 (c) M1 for multiplying matrix by appropriate column vector A1 correct work (ft wrong determinant) A1 for conclusion 	

Jan 2010 Q5

Question Number	Scheme	Marks
Q5	(a) det $\mathbf{A} = a(a+4) - (-5 \times 2) = a^2 + 4a + 10$	M1 A1 (2)
	(b) $a^2 + 4a + 10 = (a+2)^2 + 6$	M1 A1ft
	Positive for all values of a , so A is non-singular	A1cso
		(3)
	(c) $\mathbf{A}^{-1} = \frac{1}{10} \begin{pmatrix} 4 & 5 \\ -2 & 0 \end{pmatrix}$ B1 for $\frac{1}{10}$	B1 M1 A1 (3) [8]
	Notes (a) Correct use of $ad - bc$ for M1 (b) Attempt to complete square for M1 Alt 1 Attempt to establish turning point (e.g. calculus, graph) M1 Minimum value 6 for A1ft Positive for all values of a , so A is non-singular for A1 cso Alt 2 Attempt at $b^2 - 4ac$ for M1. Can be part of quadratic formula Their correct -24 for first A1 No real roots or equivalent, so A is non-singular for final A1cso (c) Swap leading diagonal, and change sign of other diagonal, with numbers or a for M1 Correct matrix independent of 'their $\frac{1}{10}$ award' final A1	

Question Number	Scheme	Mark	cs
Q9	(a) 45° or $\frac{\pi}{4}$ rotation (anticlockwise), about the origin	B1, B1	(2)
	(b) $ \begin{pmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix} \begin{pmatrix} p \\ q \end{pmatrix} = \begin{pmatrix} 3\sqrt{2} \\ 4\sqrt{2} \end{pmatrix} $	M1	_
	p-q=6 and $p+q=8$ or equivalent	M1 A1	
	p = 7 and $q = 1$ both correct	A1	(4)
	(c) Length of <i>OA</i> (= length of <i>OB</i>) = $\sqrt{7^2 + 1^2}$, = $\sqrt{50} = 5\sqrt{2}$	M1, A1	(2)
	(d) $M^2 = \begin{pmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$	M1 A1	(2)
	(e) $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 3\sqrt{2} \\ 4\sqrt{2} \end{pmatrix}$ so coordinates are $(-4\sqrt{2}, 3\sqrt{2})$	M1 A1	(2) [12]
	Notes Order of matrix multiplication needs to be correct to award Ms (a) More than one transformation $0/2$ (b) Second M1 for correct matrix multiplication to give two equations Alternative: (b) $\mathbf{M}^{-1} = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix}$ First M1 A1 First M1 A1 First M1 A1 (c) Correct use of their p and their q award M1 (e) Accept column vector for final A1.		

Question Number	Scheme	Marks
2.	(a) $\mathbf{M} = \begin{pmatrix} 4 & 3 \\ 6 & 2 \end{pmatrix}$ Determinant: $(8-18) = -10$	B1
	$\mathbf{M}^{-1} = \frac{1}{-10} \begin{pmatrix} 2 & -3 \\ -6 & 4 \end{pmatrix} \begin{bmatrix} = \begin{pmatrix} -0.2 & 0.3 \\ 0.6 & -0.4 \end{pmatrix} \end{bmatrix}$	M1 A1 (3)
	(b) Setting $\Delta = 0$ and using $2a^2 \pm 18 = 0$ to obtain $a = .$	M1
	$a = \pm 3$	A1 cao
		(2) 5 marks
	Notes: (a) B1: must be -10 M1: for correct attempt at changing elements in major diagonal and changing signs in minor diagonal. Three or four of the numbers in the matrix should be correct — eg allow one slip A1: for any form of the correct answer, with correct determinant then isw. Special case: a not replaced is B0M1A0	
	(b) Two correct answers, $a = \pm 3$, with no working is M1A1 Just $a = 3$ is M1A0, and also one of these answers rejected is A0. Need 3 to be simplified (not $\sqrt{9}$).	

Question Number	Scheme	Marks
6.	$ \begin{array}{ccc} (a) \begin{pmatrix} 8 & 0 \\ 0 & 8 \end{pmatrix} \end{array} $	B1 (1)
	$ (b) \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} $	B1 (1)
	(c) $\mathbf{T} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 8 & 0 \\ 0 & 8 \end{pmatrix} = \begin{pmatrix} 8 & 0 \\ 0 & -8 \end{pmatrix}$	M1 A1 (2)
	(d) $\mathbf{AB} = \begin{pmatrix} 6 & 1 \\ 4 & 2 \end{pmatrix} \begin{pmatrix} k & 1 \\ c & -6 \end{pmatrix} = \begin{pmatrix} 6k + c & 0 \\ 4k + 2c & -8 \end{pmatrix}$	M1 A1 A1 (3)
	(e) " $6k + c = 8$ " and " $4k + 2c = 0$ " Form equations and solve simultaneously	M1
	k=2 and $c=-4$	A1 (2)
		9 marks
	Alternative method for (e) M1: $AB = T \Rightarrow B = A^{-1}T = \text{ and compare elements to find } k \text{ and } c$. Then A1 as before.	
	Notes	
	 (c) M1: Accept multiplication of their matrices either way round (this can be implied by correct answer) A1: cao (d) M1: Correct matrix multiplication method implied by one or two correct terms in correct positions. A1: for three correct terms in correct positions 2nd A1: for all four terms correct and simplified (e) M1: follows their previous work but must give two equations from which k and c can be found and there must be attempt at solution getting to k = or c =. A1: is cao (but not cso - may follow error in position of 4k + 2c earlier). 	

Jan 2011 Q2

Question Number	Scheme	Ma	rks
2. (a)	$\mathbf{A} = \begin{pmatrix} 2 & 0 \\ 5 & 3 \end{pmatrix}, \mathbf{B} = \begin{pmatrix} -3 & -1 \\ 5 & 2 \end{pmatrix}$		
	$\mathbf{AB} = \begin{pmatrix} 2 & 0 \\ 5 & 3 \end{pmatrix} \begin{pmatrix} -3 & -1 \\ 5 & 2 \end{pmatrix}$		
	$= \begin{pmatrix} 2(-3) + 0(5) & 2(-1) + 0(2) \\ 5(-3) + 3(5) & 5(-1) + 3(2) \end{pmatrix}$ A correct method to multiply out two matrices. Can be implied by two out of four correct elements.	M1	
	$= \begin{pmatrix} -6 & -2 \\ 0 & 1 \end{pmatrix}$ Any three elements correct	A1	
	Confect answer	A1	
	Correct answer only 3/3		(3)
(b)	Reflection: about the views	M1	
(b)	Reflection; about the y-axis. $\underline{y\text{-axis}}$ (or $x = 0$.)	A1	(0)
			(2)
(c)	$\mathbf{C}^{100} = \mathbf{I} = \underbrace{\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}} \text{or } \mathbf{I}$	B1	
			(1) [6]

Jan 2011 Q 8

Question Number	Scheme	Marks
8. (a)	$\mathbf{A} = \begin{pmatrix} 2 & -2 \\ -1 & 3 \end{pmatrix}$ $\det \mathbf{A} = 2(3) - (-1)(-2) = 6 - 2 = \underline{4}$ $\underline{4}$	<u>B1</u> (1)
(b)	$\mathbf{A}^{-1} = \frac{1}{4} \begin{pmatrix} 3 & 2 \\ 1 & 2 \end{pmatrix}$ $\frac{1}{\det \mathbf{A}} \begin{pmatrix} 3 & 2 \\ 1 & 2 \end{pmatrix}$ $\frac{1}{4} \begin{pmatrix} 3 & 2 \\ 1 & 2 \end{pmatrix}$	M1 A1 (2)
(c)	Area $(R) = \frac{72}{4} = \underline{18} \text{ (units)}^2$ $\frac{72}{\text{their det } \mathbf{A}} \text{ or } 72 \text{ (their det } \mathbf{A})$ $\underline{18} \text{ or ft answer.}$	M1 A1√ (2)
(d)	$\mathbf{AR} = \mathbf{S} \implies \mathbf{A}^{-1} \mathbf{AR} = \mathbf{A}^{-1} \mathbf{S} \implies \mathbf{R} = \mathbf{A}^{-1} \mathbf{S}$ $\mathbf{R} = \frac{1}{4} \begin{pmatrix} 3 & 2 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 0 & 8 & 12 \\ 4 & 16 & 4 \end{pmatrix}$ At least one attempt to apply \mathbf{A}^{-1} by any of the three vertices in \mathbf{S} . $= \frac{1}{4} \begin{pmatrix} 8 & 56 & 44 \\ 8 & 40 & 20 \end{pmatrix}$	M1
	$= \begin{pmatrix} 2 & 14 & 11 \\ 2 & 10 & 5 \end{pmatrix}$ At least one correct column o.e. At least two correct columns o.e.	A1√ A1
	Vertices are (2, 2), (14, 10) and (11, 5). All three coordinates correct.	A1 (4) [9]

Number	Scheme	Notes	Ma	ırks
3. (a)	$\mathbf{A} = \begin{pmatrix} 1 & \ddot{\mathbf{O}} \ 2 \\ \ddot{\mathbf{O}} \ 2 & -1 \end{pmatrix}$			
(i)	$\mathbf{A}^2 = \begin{pmatrix} 1 & \ddot{O} \ 2 \\ \ddot{O} \ 2 & -1 \end{pmatrix} \begin{pmatrix} 1 & \ddot{O} \ 2 \\ \ddot{O} \ 2 & -1 \end{pmatrix}$			
	$= \begin{pmatrix} 1+2 & \ddot{0} \ 2-\ddot{0} \ 2 \\ \ddot{0} \ 2-\ddot{0} \ 2 & 2+1 \end{pmatrix}$	A correct method to multiply out two matrices. Can be implied by two out of four correct elements.	M1	
	$= \begin{pmatrix} 3 & 0 \\ 0 & 3 \end{pmatrix}$	Correct answer	A1	
				(
		Enlargement;	B1;	
(ii)	Enlargement ; scale factor 3, centre (0, 0).	scale factor 3, centre (0, 0)	B1	
	Allow 'from' or 'about' for centre	and 'O' or 'origin' for (0, 0)		
				(
(b)	$\mathbf{B} = \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}$			
		D.fl. H.	- D1	
	Reflection; in the line $y = -x$.	Reflection;	B1;	
	•	y = -x	B1; B1	
	Reflection; in the line $y = -x$. Allow 'in the axis' 'about The question does not specify a <u>single</u> transforcombinations that are correct e.g. Anticlockwise by a reflection in the x-axis is acceptable. In canonical completely correct and scored as B2 (no part Leader.	y = -x the line' $y = -x$ etc. rmation so we would need to accept any e rotation of 90° about the origin followed ases like these, the combination has to be	B1	(
(c)	Allow 'in the axis' 'about The question does not specify a single transfor combinations that are correct e.g. Anticlockwise by a reflection in the x-axis is acceptable. In ca completely correct and scored as B2 (no part	y = -x the line' $y = -x$ etc. rmation so we would need to accept any e rotation of 90° about the origin followed ases like these, the combination has to be	B1	(
(c)	Allow 'in the axis' 'about The question does not specify a single transfor combinations that are correct e.g. Anticlockwise by a reflection in the x-axis is acceptable. In carcompletely correct and scored as B2 (no part Leader. $C = \begin{pmatrix} k+1 & 12 \\ k & 9 \end{pmatrix}, k \text{ is a constant.}$ $C \text{ is singular} \implies \det C = 0. \text{ (Can be implied)}$	the line' $y = -x$ etc. Transition so we would need to accept any e rotation of 90° about the origin followed ases like these, the combination has to be marks). If in doubt consult your Team $\det \mathbf{C} = 0$	B1	(
(c)	Allow 'in the axis' 'about The question does not specify a single transfor combinations that are correct e.g. Anticlockwise by a reflection in the x-axis is acceptable. In carcompletely correct and scored as B2 (no part Leader. $C = \begin{pmatrix} k+1 & 12 \\ k & 9 \end{pmatrix}, k \text{ is a constant.}$ $C \text{ is singular} \implies \det C = 0. \text{ (Can be implied)}$	the line' $y = -x$ etc. Transition so we would need to accept any e rotation of 90° about the origin followed ases like these, the combination has to be marks). If in doubt consult your Team $\det \mathbf{C} = 0$	B1	(
(c)	Allow 'in the axis' 'about The question does not specify a <u>single</u> transfor combinations that are correct e.g. Anticlockwise by a reflection in the x-axis is acceptable. In carcompletely correct and scored as B2 (no part Leader. $\mathbf{C} = \begin{pmatrix} k+1 & 12 \\ k & 9 \end{pmatrix}, \ k \text{ is a constant.}$ $\mathbf{C} \text{ is singular} \implies \det \mathbf{C} = 0. \text{ (Can be implied)}$ $\mathbf{Special Case} \frac{1}{9(k+1)-12k} = \frac{1}{9(k+1)-12k}$	the line' $y = -x$ etc. rmation so we would need to accept any erotation of 90° about the origin followed ases like these, the combination has to be marks). If in doubt consult your Team	B1	(
(c)	Allow 'in the axis' 'about The question does not specify a single transfor combinations that are correct e.g. Anticlockwise by a reflection in the x-axis is acceptable. In concompletely correct and scored as B2 (no part Leader. $C = \begin{pmatrix} k+1 & 12 \\ k & 9 \end{pmatrix}, k \text{ is a constant.}$ $C \text{ is singular} \implies \det C = 0. \text{ (Can be implied)}$ $Special Case \frac{1}{9(k+1)-12k}$	the line' $y = -x$ etc. Transition so we would need to accept any erotation of 90° about the origin followed ases like these, the combination has to be marks). If in doubt consult your Team $\det \mathbf{C} = 0$ $= 0 \mathbf{B1}(\mathbf{implied})\mathbf{M0A0}$	B1	(
(c)	Allow 'in the axis' 'about The question does not specify a <u>single</u> transfor combinations that are correct e.g. Anticlockwise by a reflection in the x-axis is acceptable. In carcompletely correct and scored as B2 (no part Leader. $\mathbf{C} = \begin{pmatrix} k+1 & 12 \\ k & 9 \end{pmatrix}, \ k \text{ is a constant.}$ $\mathbf{C} \text{ is singular} \implies \det \mathbf{C} = 0. \text{ (Can be implied)}$ $\mathbf{Special Case} \frac{1}{9(k+1)-12k} = \frac{1}{9(k+1)-12k}$	the line' $y = -x$ etc. Transition so we would need to accept any erotation of 90° about the origin followed ases like these, the combination has to be marks). If in doubt consult your Team $\det \mathbf{C} = 0$ $= 0 \mathbf{B1}(\mathbf{implied})\mathbf{M0A0}$	B1	(
(c)	Allow 'in the axis' 'about The question does not specify a single transfor combinations that are correct e.g. Anticlockwise by a reflection in the x-axis is acceptable. In carcompletely correct and scored as B2 (no part Leader. $C = \begin{pmatrix} k+1 & 12 \\ k & 9 \end{pmatrix}, k \text{ is a constant.}$ $C \text{ is singular } \Rightarrow \det C = 0. \text{ (Can be implied)}$ $Special Case \frac{1}{9(k+1)-12k} = \frac{1}{9($	the line' $y = -x$ etc. Transition so we would need to accept any erotation of 90° about the origin followed ases like these, the combination has to be marks). If in doubt consult your Team $\det \mathbf{C} = 0$ $= 0 \mathbf{B1}(\mathbf{implied})\mathbf{M0A0}$ $Applies 9(k+1) - 12k$	B1	
(c)	Allow 'in the axis' 'about The question does not specify a <u>single</u> transforcombinations that are correct e.g. Anticlockwise by a reflection in the x-axis is acceptable. In cacompletely correct and scored as B2 (no part Leader. $C = \begin{pmatrix} k+1 & 12 \\ k & 9 \end{pmatrix}, k \text{ is a constant.}$ $C \text{ is singular} \implies \det C = 0. \text{ (Can be implied)}$ $Special Case \frac{1}{9(k+1)-12k} = \frac{1}{9(k+$	the line' $y = -x$ etc. Transition so we would need to accept any erotation of 90° about the origin followed ases like these, the combination has to be marks). If in doubt consult your Team $\det \mathbf{C} = 0$ $= 0 \mathbf{B1}(\mathbf{implied})\mathbf{M0A0}$ $Applies 9(k+1) - 12k$	B1 B1 M1	(

I.

Question Number	Scheme	Notes	Maı	ks
5.	$\mathbf{A} = \begin{pmatrix} -4 & a \\ b & -2 \end{pmatrix}, \text{ where } a \text{ and } b \text{ are constants.}$			
(a)	$\mathbf{A} \begin{pmatrix} 4 \\ 6 \end{pmatrix} = \begin{pmatrix} 2 \\ -8 \end{pmatrix}$			
	Therefore, $\begin{pmatrix} -4 & a \\ b & -2 \end{pmatrix} \begin{pmatrix} 4 \\ 6 \end{pmatrix} = \begin{pmatrix} 2 \\ -8 \end{pmatrix}$	Using the information in the question to form the matrix equation. Can be implied by both correct equations below.	M1	
	Do not allow this mark for other incorrect states e.g. $\binom{4}{6}\binom{-4}{b}\binom{-2}{-2} = \binom{2}{-8}$ would be M0 unless foll	owed by correct equations or $\begin{pmatrix} -16 + 6a \\ 4b - 12 \end{pmatrix} = \begin{pmatrix} 2 \\ -8 \end{pmatrix}$		
	So, $-16 + 6a = 2$ and $4b - 12 = -8$ Allow $\begin{pmatrix} -16 + 6a \\ 4b - 12 \end{pmatrix} = \begin{pmatrix} 2 \\ -8 \end{pmatrix}$	Any one correct equation. Any correct horizontal line	M1	
	giving $a = 3$ and $b = 1$.	Any one of $a = 3$ or $b = 1$. Both $a = 3$ and $b = 1$.	A1 A1	(4)
(b)	$\det \mathbf{A} = 8 - (3)(1) = 5$	Finds determinant by applying 8 – their ab . $\det \mathbf{A} = 5$	M1 A1	(4)
	Special case: The equations -16 + 6b = 2 and 4 from incorrect matrix multiplication. This wi in (b).	ll score nothing in (a) but allow all the marks		
	Note that $\det \mathbf{A} = \frac{1}{8 - ab}$ scores M0 here but the beware $\det \mathbf{A} = \frac{1}{8 - ab} = \frac{1}{5} \Rightarrow area S = \frac{30}{\frac{1}{5}} = 150$	he following 2 marks are available. However,		
	This scores M0A0 M1A0 Area $S = (\det \mathbf{A})(\text{Area } R)$		-	
	Area $S = 5 \times 30 = 150 \text{ (units)}^2$	$\frac{30}{\text{their det }\mathbf{A}}$ or $30 \times (\text{their det }\mathbf{A})$	M1	
	the unit square, for example, after the transfo	150 or ft answer ft provided final answer > 0 ute for the area scale factor and find the area of rmation represented by A. This needs to be a v establishing the area scale factor M1. Correct	A1 √	(4)
				8

Question Number	Scheme	Notes	Marks
4(a)	$ \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 2 & 2 \\ 1 & 1 & 4 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 4 \\ 1 & 2 & 2 \end{pmatrix} $	Attempt to multiply the right way round with at least 4 correct elements	M1
	T' has coordinates $(1,1)$, $(1,2)$ and $(4,2)$ or $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$, $\begin{pmatrix} 1 \\ 2 \end{pmatrix}$, NOT just $\begin{pmatrix} 1 & 1 & 4 \\ 1 & 2 & 2 \end{pmatrix}$	Correct coordinates or vectors	A1
(b)			(2)
(0)	Pofloction in the line v = v	Reflection	B1
	Reflection in the line $y = x$	y = x	B1
	Allow 'in the axis' 'about the line' $y = x$ etc. Provided both reference to the origin unless there is a c		
			(2)
(c)	(4 -2)(1 2) (-2 0)	2 correct elements	M1
	$\mathbf{QR} = \begin{pmatrix} 4 & -2 \\ 3 & -1 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} = \begin{pmatrix} -2 & 0 \\ 0 & 2 \end{pmatrix}$	Correct matrix	A1
	Note that $\mathbf{RQ} = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} 4 & -2 \\ 3 & -1 \end{pmatrix} = \begin{pmatrix} 10 \\ 24 \end{pmatrix}$	-4 -10 scores M0A0 in (c) but	
	allow all the marks in (d) and (e)	T	
(1)			(2)
(d)	$\det(\mathbf{QR}) = -2 \times 2 - 0 = -4$	"-2"x"2" – "0"x"0"	M1 A1
	Answer only scores 2/2		
	$\frac{1}{\det(\mathbf{Q}\mathbf{R})}$ scores M0		
(e)	Area of $T = \frac{1}{2} \times 1 \times 3 = \frac{3}{2}$	Correct area for T	B1
	3	Attempt at " $\frac{3}{2}$ "×±"4"	M1
	Area of $T'' = \frac{3}{2} \times 4 = 6$	6 or follow through their det(QR) x Their triangle area provided area > 0	A1ft
			(3)
			Total 11

Question Number	Scheme		Notes	Marks
8(a)	$\det(\mathbf{A}) = 3 \times 0 - 2 \times 1 (= -2)$	Correct attem	pt at the determinant	M1
	$det(\mathbf{A}) \neq 0$ (so A is non singular)	det(A) = -2 a	nd some reference to zero	A1
	$\frac{1}{\det(\mathbf{A})}$	scores M0		(2)
(b)	$\mathbf{B}\mathbf{A}^2 = \mathbf{A} \Rightarrow \mathbf{B}\mathbf{A} = \mathbf{I} \Rightarrow \mathbf{B} = \mathbf{A}^{-1}$	Recognising t	that A^{-1} is required	M1
	1(3-1)		rect terms in $\begin{pmatrix} 3 & -1 \\ -2 & 0 \end{pmatrix}$	M1
	$\mathbf{B} = -\frac{1}{2} \begin{pmatrix} 3 & -1 \\ -2 & 0 \end{pmatrix}$	$\frac{1}{\text{their det(A)}} \left($		B1ft
		Fully correct		A1 (4)
		er only score 4/		Total 6
(b) Way 2	Ignore poor matrix algebra n	iotation ii the	intention is clear	
	$\mathbf{A}^2 = \begin{pmatrix} 2 & 3 \\ 6 & 11 \end{pmatrix}$		Correct matrix	B1
	$ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} 2 & 3 \\ 6 & 11 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 2 & 3 \end{pmatrix} \Rightarrow \begin{cases} 2a + 6b = 0 \\ 3a + 11b = 1 \end{cases} $ or	cc + 6d = 2 $3c + 11d = 3$	2 equations in a and b or 2 equations in c and d	M1
	$a = -\frac{3}{2}, b = \frac{1}{2}, c = 1, d = 0$		M1 Solves for a and b or c and d	M1A1
	2 2		A1 All 4 values correct	
(1-) 111 2	(2.2)			
(b) Way 3	$\mathbf{A}^2 = \begin{pmatrix} 2 & 3 \\ 6 & 11 \end{pmatrix}$		Correct matrix	B1
	$(\mathbf{A}^2)^{-1} = \frac{1}{"2" \times "11" - "3" \times "6"} \begin{pmatrix} "11" & "-3" \\ "-6" & "2" \end{pmatrix}$ see note Attempt inverse of \mathbf{A}^2		M1	
	$\mathbf{A} \left(\mathbf{A}^2 \right)^{-1} = \frac{1}{4} \begin{pmatrix} 0 & 1 \\ 2 & 3 \end{pmatrix} \begin{pmatrix} 11 & -3 \\ -6 & 2 \end{pmatrix} or \frac{1}{4} \begin{pmatrix} 11 \\ -6 \end{pmatrix}$	$\begin{array}{c} -3 \\ 2 \end{array}) \begin{pmatrix} 0 & 1 \\ 2 & 3 \end{pmatrix}$	Attempts $\mathbf{A}(\mathbf{A}^2)^{-1} or(\mathbf{A}^2)^{-1} \mathbf{A}$	M1
	$\mathbf{B} = -\frac{1}{2} \begin{pmatrix} 3 & -1 \\ -2 & 0 \end{pmatrix}$		Fully correct answer	A1
(h) 117 - 4	D		B 11 4 5 5	D1
(b) Way 4	$\mathbf{BA} = \mathbf{I}$	2d = 0	Recognising that $BA = I$	B1
	$ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 2 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \Rightarrow \begin{cases} 2b = 1 \\ a + 3b = 0 \end{cases} $ or $ a = -\frac{3}{2}, b = \frac{1}{2}, c = 1, d = 0 $	c + 3d = 1	2 equations in a and b or 2 equations in c and d	M1
	$a = -\frac{3}{2}, b = \frac{1}{2}, c = 1, d = 0$		M1 Solves for a and b or c and d	M1A1
			A1 All 4 values correct	

Question Number	Scheme	Notes	Marks
2. (a)	$\mathbf{A} = \begin{pmatrix} 3 & 1 & 3 \\ 4 & 5 & 5 \end{pmatrix},$	$\mathbf{B} = \begin{pmatrix} 1 & 1 \\ 1 & 2 \\ 0 & -1 \end{pmatrix}$	
	$\mathbf{AB} = \begin{pmatrix} 3 & 1 & 3 \\ 4 & 5 & 5 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 2 \\ 0 & -1 \end{pmatrix}$		
	$= \begin{pmatrix} 3+1+0 & 3+2-3 \\ 4+5+0 & 4+10-5 \end{pmatrix}$	A correct method to multiply out two matrices. Can be implied by two out of four correct (unsimplified) elements in a dimensionally correct matrix. A 2x2 matrix with a number or a calculation at each corner.	M1
	$= \begin{pmatrix} 4 & 2 \\ 9 & 9 \end{pmatrix}$	Correct answer	A1
	A correct answer with no wo	rking can score both marks	
			[2]
(b)	$\mathbf{C} = \begin{pmatrix} 3 & 2 \\ 8 & 6 \end{pmatrix}, \ \mathbf{D} = \begin{pmatrix} 5 & 2k \\ 4 & k \end{pmatrix}$	where k is a constant,	
	$\mathbf{C} + \mathbf{D} = \begin{pmatrix} 3 & 2 \\ 8 & 6 \end{pmatrix} + \begin{pmatrix} 5 & 2k \\ 4 & k \end{pmatrix} = \begin{pmatrix} 8 & 2k+2 \\ 12 & 6+k \end{pmatrix}$	An attempt to add C to D. Can be implied by two out of four correct (unsimplified) elements in a <u>dimensionally correct</u> matrix.	M1
	E does not have an inverse \Rightarrow det E = 0.		
	8(6+k) - 12(2k+2)	Applies " $ad - bc$ " to E where E is a 2x2 matrix.	M1
	8(6+k) - 12(2k+2) = 0	States or applies $det(\mathbf{E}) = 0$ where $det(\mathbf{E}) = ad - bc$ or $ad + bc$ only and \mathbf{E} is a 2x2 matrix.	M1
	Note $8(6+k) - 12(2k+2) = 0$ or $8(6+k) - 12(2k+2) = 0$		
	48 + 8k = 24k + 24		
	24 = 16k		
	$k = \frac{3}{2}$		A1 oe
			[4]
			6 marks

Question Number	Scheme	Notes	Marks
9.	$\det \mathbf{M} = 3(-5) - (4)(2) = -15 - 8 = -23$	-23	B1
(a)			[1]
(b)	Therefore, $\begin{pmatrix} 3 & 4 \\ 2 & -5 \end{pmatrix} \begin{pmatrix} 2a - 7 \\ a - 1 \end{pmatrix} = \begin{pmatrix} 25 \\ -14 \end{pmatrix}$	Using the information in the question to form the matrix equation. Can be implied by any of the correct equations below.	M1
	Either, $3(2a-7) + 4(a-1) = 25$ or $2(2a-7) - 5(a-1) = -14$ or $3(2a-7) + 4(a-1) = 25 = 25 = 25 = 25 = 25 = 25 = 25 = 2$	Any one correct equation (unsimplified) inside or outside matrices	A1
	giving $a = 5$	a = 5	A1
			[3]
(c)	Area(ORS) = $\frac{1}{2}(6)(4)$; = 12 (units) ²	M1: $\frac{1}{2}$ (6)(Their $a-1$)	M1A1
	N-4-4/(0) is sometimes with the most described	A1: 12 cao and cso	
	Note A(6, 0) is sometimes misinterpreted as (0, 6) e.g.1/2x6x		
			[2]
(d)	$Area(OR'S') = \pm 23 \times (12)$	$\pm \det \mathbf{M} \times (\text{their part } (c) \text{ answer})$	M1
		$\underline{276}$ (follow through provided area > 0)	A1√
	A method not involving the determinant requires		
	12)) and then a <u>correct</u> method for the area e.g. $(26x25 - 7x13 - 9x12 - 7x25)$ M1 = 276 A1		
	Rotation; 90° anti-clockwise (or 270° clockwise)	B1: Rotation, Rotates, Rotate, Rotating (not turn)	[2]
(e)	about (0, 0).	B1:90° anti-clockwise (or 270° clockwise)	B1;B1
	,	about (around/from etc.) $(0, 0)$	
			[2]
(f)	M = BA	$\mathbf{M} = \mathbf{B}\mathbf{A}$, seen or implied.	M1
	$\mathbf{A}^{-1} = \frac{1}{(0)(0) - (1)(-1)} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}; = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$	$\mathbf{A}^{-1} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$	A1
	$\mathbf{B} = \begin{pmatrix} 3 & 4 \\ 2 & -5 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$	Applies M(their A ⁻¹)	M1
	$\mathbf{B} = \begin{pmatrix} -4 & 3 \\ 5 & 2 \end{pmatrix}$		A1
	NB some candidates state $\mathbf{M} = \mathbf{AB}$ and then calculate \mathbf{MA}^{-1} or state $\mathbf{M} = \mathbf{BA}$ and then calculate $\mathbf{A}^{-1}\mathbf{M}$. These could score M0A0 M1A1ft and M1A1M0A0 respectively.		
			14 marks
	Special case		
(f)	M = AB	$\mathbf{M} = \mathbf{A}\mathbf{B}$, seen or implied.	M0
		$\mathbf{A}^{-1} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$	A0
	$\mathbf{B} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} 3 & 4 \\ 2 & -5 \end{pmatrix} = \begin{pmatrix} 2 & -5 \\ -3 & -4 \end{pmatrix}$	Applies (their A^{-1}) M	M1A1ft

Question Number	Scheme	Marks
4.	(a) $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ (b) $\begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}$	B1 (1) B1 (1)
	(c) $\mathbf{R} = \mathbf{Q}\mathbf{P}$	B1 (1)
	(d) $R = \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$	M1 A1 cao (2) B1
	(e) Reflection in the y axis	B1 (2) [7]
Notes	(a) and (b) Signs must be clear for B marks.	
	(c) Accept QP or their 2x2 matrices in the correct order only for B1.	
	(d) M for their \mathbf{QP} where answer involves ± 1 and 0 in a 2x2 matrix, A for correct answer only.	
	(e) First B for Reflection, Second B for 'y axis' or ' x =0'. Must be single transformation. Ignore any superfluous information.	

Question Number	Scheme	Marks
6.	(a) Determinant: $2 - 3a = 0$ and solve for $a =$	M1
	So $a = \frac{2}{3}$ or equivalent	A1 (2)
	(b) Determinant: $(1 \times 2) - (3 \times -1) = 5$ (Δ)	
	$Y^{-1} = \frac{1}{5} \begin{pmatrix} 2 & 1 \\ -3 & 1 \end{pmatrix} \qquad \begin{bmatrix} = \begin{pmatrix} 0.4 & 0.2 \\ -0.6 & 0.2 \end{pmatrix} \end{bmatrix}$	M1A1 (2)
	(c) $\frac{1}{5} \begin{pmatrix} 2 & 1 \\ -3 & 1 \end{pmatrix} \begin{pmatrix} 1-\lambda \\ 7\lambda - 2 \end{pmatrix} = \frac{1}{5} \begin{pmatrix} 2-2\lambda+7\lambda-2 \\ -3+3\lambda+7\lambda-2 \end{pmatrix} = \begin{pmatrix} \lambda \\ 2\lambda-1 \end{pmatrix}$	M1depM1A1 A1 (4) [8]
	Alternative method for (c) $ \begin{pmatrix} 1 & -1 \\ 3 & 2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 - \lambda \\ 7\lambda - 2 \end{pmatrix} \text{ so } x - y = 1 - \lambda \text{ and } 3x + 2y = 7\lambda - 2 $	M1M1
77.	Solve to give $x = \lambda$ and $y = 2\lambda - 1$	A1A1
Notes	(b) M for $\frac{1}{\text{their det}} \begin{pmatrix} 2 & 1 \\ -3 & 1 \end{pmatrix}$	
	(c) First M for their $\mathbf{Y}^{-1}\mathbf{B}$ in correct order with \mathbf{B} written as a $2x1$ matrix, second M dependent on first for attempt at multiplying their matrices resulting in a $2x1$ matrix, first A for λ , second A for $2\lambda-1$	
	Alternative for (c) First M to obtain two linear equations in x, y, λ Second M for attempting to solve for x or y in terms of λ	

Question Number	Scheme	Notes	Marks
1.	$\mathbf{M} = \begin{pmatrix} x & x-2 \\ 3x-6 & 4x-11 \end{pmatrix}$		
	$\det \mathbf{M} = x(4x - 11) - (3x - 6)(x - 2)$	Correct attempt at determinant	M1
	$x^2 + x - 12 (=0)$	Correct 3 term quadratic	A1
	$(x+4)(x-3) (= 0) \rightarrow x =$	Their $3TQ = 0$ and attempts to solve relevant quadratic using factorisation or completing the square or correct quadratic formula leading to $x =$	M1
	$x = -4, \ x = 3$	Both values correct	A1
			(4)
			Total 4
Notes			
	x(4x-11) = (3x-6)(x-2) award first M1		
	$\pm(x^2+x-12)$ seen award first M1A1		
	Method mark for solving 3 term quadratic: 1. Factorisation		
	$(x^2 + bx + c) = (x + p)(x + q)$, where $ pq = c $, leading to x =		
	$(ax^2 + bx + c) = (mx + p)(nx + q)$, where $ pq = c $ and $ mm = a $, leading to $x = a$		
	2. <u>Formula</u> Attempt to use <u>correct</u> formula (with values for <i>a</i> , <i>b</i> and <i>c</i>).		
	3. Completing the square		
	Solving $x^2 + bx + c = 0$: $\left(x \pm \frac{b}{2}\right)^2 \pm q \pm c$, $q \neq 0$, leading to $x =$		
	Both correct with no working 4/4, only one correct 0/4		

Question Number	Scheme	Notes	Marks
8(a)	$\mathbf{A}^2 = \begin{pmatrix} 6 & -2 \\ -4 & 1 \end{pmatrix} \begin{pmatrix} 6 & -2 \\ -4 & 1 \end{pmatrix} = \begin{pmatrix} 44 & -14 \\ -28 & 9 \end{pmatrix}$	M1:Attempt both \mathbf{A}^2 and $7\mathbf{A} + 2\mathbf{I}$	
	$7\mathbf{A} + 2\mathbf{I} = \begin{pmatrix} 42 & -14 \\ -28 & 7 \end{pmatrix} + \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} = \begin{pmatrix} 44 & -14 \\ -28 & 9 \end{pmatrix}$	A1: Both matrices correct	M1A1
	OR $\mathbf{A}^2 - 7\mathbf{A} = \mathbf{A}(\mathbf{A} - 7\mathbf{I})$	M1 for expression and attempt to substitute and multiply (2x2)(2x2)=2x2	
	$\mathbf{A}(\mathbf{A} - 7\mathbf{I}) = \begin{pmatrix} 6 & -2 \\ -4 & 1 \end{pmatrix} \begin{pmatrix} -1 & -2 \\ -4 & -6 \end{pmatrix} = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} = 2\mathbf{I}$	A1 cso	
			(2)
(b)	$\mathbf{A}^2 = 7\mathbf{A} + 2\mathbf{I} \Rightarrow \mathbf{A} = 7\mathbf{I} + 2\mathbf{A}^{-1}$	Require one correct line using accurate expressions involving A^{-1} and identity matrix to be clearly stated as I .	M1
	$\mathbf{A}^{-1} = \frac{1}{2} (\mathbf{A} - 7\mathbf{I})^*$		A1* cso
	Numerical approach award 0/2.		
			(2)
(c)	$\mathbf{A}^{-1} = \frac{1}{2} \begin{pmatrix} -1 & -2 \\ -4 & -6 \end{pmatrix}$	Correct inverse matrix or equivalent	B1
	$\frac{1}{2} \begin{pmatrix} -1 & -2 \\ -4 & -6 \end{pmatrix} \begin{pmatrix} 2k+8 \\ -2k-5 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} -2k-8+4k+10 \\ -8k-32+12k+30 \end{pmatrix}$	Matrix multiplication involving their inverse and k : $(2x2)(2x1)=2x1.$ N.B. $\begin{pmatrix} 6 & -2 \\ -4 & 1 \end{pmatrix} \begin{pmatrix} 2k+8 \\ -2k-5 \end{pmatrix} \text{is M0}$	M1
	$\begin{pmatrix} k+1 \\ 2k-1 \end{pmatrix} \text{ or } (k+1, 2k-1)$ Or:	(k+1) first A1, $(2k-1)$ second A1	A1,A1
	$ \begin{pmatrix} 6 & -2 \\ -4 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 2k+8 \\ -2k-5 \end{pmatrix} $	Correct matrix equation.	B1
	6x - 2y = 2k + 8 $-4x + y = -2k - 5 \Rightarrow x = \dots \text{ or } y = \dots$	Multiply out and attempt to solve simultaneous equations for x or y in terms of k .	M1
		(k+1) first A1, $(2k-1)$ second A1	A1,A1
			(4)
			Total 8

Question Number	Scheme	Marl	KS
2.	$\mathbf{A} = \begin{pmatrix} 2k+1 & k \\ -3 & -5 \end{pmatrix}, \mathbf{B} = \mathbf{A} + 3\mathbf{I}$		
(i)(a)	For applying $\mathbf{A} + 3\mathbf{I}$. $\mathbf{B} = \mathbf{A} + 3\mathbf{I} = \begin{pmatrix} 2k+1 & k \\ -3 & -5 \end{pmatrix} + 3 \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ Can be implied by three out of four correct elements in candidate's final answer. Solution must come from addition.	M1	
	$= \begin{pmatrix} 2k+4 & k \\ -3 & -2 \end{pmatrix}$ Correct answer.	A1	[2]
(b)	\mathbf{B} is singular $\Rightarrow \det \mathbf{B} = 0$.		
	$-2(2k+4)-(-3k)=0$ Applies " $ad-bc$ " to ${\bf B}$ and equates to 0	M1	
	-4k - 8 + 3k = 0		
	k = -8 $k = -8$	Alcao	[2]
(ii)	$\mathbf{C} = \begin{pmatrix} 2 \\ -3 \\ 4 \end{pmatrix}, \mathbf{D} = \begin{pmatrix} 2 & -1 & 5 \end{pmatrix}, \mathbf{E} = \mathbf{C}\mathbf{D}$		
	$\mathbf{E} = \begin{pmatrix} 2 \\ -3 \\ 4 \end{pmatrix} \begin{pmatrix} 2 & -1 & 5 \end{pmatrix} = \begin{pmatrix} 4 & -2 & 10 \\ -6 & 3 & -15 \\ 8 & -4 & 20 \end{pmatrix}$ Candidate writes down a 3×3 matrix.	M1	
	$E = \begin{bmatrix} -3 \\ 4 \end{bmatrix} \begin{pmatrix} 2 & -1 & 5 \end{pmatrix} = \begin{bmatrix} -6 & 3 & -15 \\ 8 & -4 & 20 \end{bmatrix}$ Correct answer.	A1	
			[2] 6

Question Number	Scheme	Mai	·ks
	$\mathbf{A} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \ \mathbf{B} = \begin{pmatrix} 2 & 3 \\ 1 & 4 \end{pmatrix}$		
(a)	$\mathbf{P} = \mathbf{A}\mathbf{B} \left\{ = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} 2 & 3 \\ 1 & 4 \end{pmatrix} \right\}$ $\mathbf{P} = \mathbf{A}\mathbf{B} \text{, seen or implied.}$	M1	
	$\mathbf{P} = \begin{pmatrix} 1 & 4 \\ -2 & -3 \end{pmatrix}$ Correct answer.	A1	[2]
(b)	$\det \mathbf{P} = 1(-3) - (4)(-2) \ \{ = -3 + 8 = 5 \}$ Applies " $ad - bc$ ".	M1	
	Area $(T) = \frac{24}{5}$ (units) ² $\frac{24}{\text{their det } \mathbf{P}}$, dependent on previous M $\frac{24}{5}$ or $\frac{24}{5}$ or $\frac{4.8}{5}$		[3]
(c)	$\mathbf{QP} = \mathbf{I} \implies \mathbf{QPP}^{-1} = \mathbf{IP}^{-1} \implies \mathbf{Q} = \mathbf{P}^{-1}$		[v]
	$\mathbf{Q} = \mathbf{P}^{-1} = \frac{1}{5} \begin{pmatrix} -3 & -4 \\ 2 & 1 \end{pmatrix}$ $\mathbf{Q} = \mathbf{P}^{-1} \text{ stated or an attempt to find } \mathbf{P}^{-1}.$ Correct ft inverse matrix.	M1 A1ft	[2]
	Using BA , area is the same in (b) and inverse is $\frac{1}{5}\begin{pmatrix} 1 & -2 \\ 4 & -3 \end{pmatrix}$ in (c) and could gain ft marks.		,